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Note 

Numerical Computations on 
One-Dimensional Inverse Scattering Problems* 

In this note we present an approximate method to detemine the index of refraction of a 
dielectric obstacle. For simplicity we treat one-dimensional models of electromagnetic 
scattering. The governing equations yield a second-order boundary value problem, in which 
the index of refraction appears as a functional parameter. The availability of reflection coef- 
ficients yields an additional initial condition. We approximate the index of refraction by a kth- 
order spline which can be written as a linear combination of B-splines. For N/2 distinct 
reflection coefficients, the resulting N/2 initial value problems yield a system of N nonlinear 
equations in N unknowns which are the coefficients of the B-splines. 

1. INTRODUCTION 

In this note we treat a class of inverse scattering problems in one dimension. We 
seek a function n(x), which we refer to as the index of refraction, such that the 
solution of the boundary value problem 

u”(X) + n’(x)w”u(x) = 0, XE (0, 1) 

(24’ + in,ou)(O) = 2in,o PI 

(24’ - in,wu)(l) = 0 

satisfies u(0) = 1 + R(w) and u’(0) = in,w(l -R(w)), where R(w) is called the 
reflection coefficient. In practice R(w) can be measured for any desired value of w. 
The problem can be thought of as arising from the refraction of an incident wave of 
the form ei”+ by a dielectric obstacle whose index of refraction is unknown. See [ 1 ] 
for a complete physical derivation of the boundary value problem (B). 

This problem has also been studied by Hagin [2] and Gray and Hagin [3 J. A 
similar problem has been studied by Schaubert and Mittra [4] and Tsien and Chen 
[51. 

* Research reported in this paper was supported by the National Aeronautics and Space 
Administration under NASA Contracts NASl-16394, NASl-17070 and NASl-17130 for the first 
author and NASl-17070 for the second author while they were in residence at ICASE, NASA Langley 
Research Center, Hampton, Virginia. 
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2. SOLUTION PROCEDURE 

Our solution procedure consists of approximating n(x) with a kth-order spline e(x). 
This choice of approximation is motivated by the need to solve the initial value 
problem 

24” + 02ti2u = 0, XE (0, 1) 

u(0) = 1 + R(o) P> 
u’(0) = in,o(l -R(w)) 

quickly and accurately. 
We begin with a brief description of the spline spaces S,(x). Let x = {xi}::, be a 

partition of [0, l], and let S,(x) denote the space of kth-order splines with knots at 
each xi. Thus, s E S,(x) implies that in each interval [xi, xi+ i], s is a polynomial of 
degree at most k - 1 and s E C’k-2’[0, I]. Let {Bi,k}i= ‘+,‘-I denote the B-spline basis 
for S,(x). The general properties of B-splines are well known and can be found in [6], 
for example. A property that we find convenient for our numerical scheme is that 
Bi,k(X)=o if X6i [Xi&k+i,Xi+i 1. As a consequence, if f(x) = x7=, CX~B~,~(X) and if 
XE [x,3x m+ ,I, where 3 = N + k - 1, then f(x) is simply given by 

m+k-I 

f(x) = (2.1) 

The approximation of n proceeds as follows: For given N and k we seek an 
approximation ii(x) = EYE i liBi,k( x such that, given the distinct pairs (wj, R(wj)), ) 
j = l,..., 1, where I= [N/2], the solutions of the 1 initial value problems (P) satisfy 
(u’ - iwju)(l) = 0. This is equivalent to solving 

F(h) = 0 P-2) 

where 5 = (A, ,,.., &,)T and F(A) = (f,(h),..., f,(h))T with f2j = Real ((u’ - iwju)(l)) 
and fij- I = Imag((u’ - iwju)( 1)), j = 1, 2 ,..., 1. 

In order to solve (2.2) one must solve (P) many times. In general this requires the 
numerical solution of these problems which leads to a large cost in computer time. 
Our choice of approximation reduces this time to a great extent. For example, when 
k = 1, ii is piecewise constant, thus one can obtain the solution of (P) in closed form, 
and when k > 2 one can easily obtain symbolic Taylor series expansions of U. The 
Taylor expansions are computed as follows: For x E [x,, x, + 1], ii(x) is a polynomial 
of degree at most k - 1 and is given by n(x) = Cy!$’ liBi,k(~). This follows from 
(2.1). Let S,(x) and H,(x) denote two linearly independent Taylor series solutions, 
expanded about x,, of (P)i that satisfy S,(x,) = H&(x,) = 1 and S&(x,) = 
H,(x,)=O.Leta,=l+R(w)andb,=in,o(l-R(w)),thenforx~[x,,x,+,]the 
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solution of (P) is given by u(x) = a,S,(x) + &H,(x), where u, = a,-, S, _ ,(x,) + 
b Hnt-, m-1 (x,)andb,=a,~,S~~,(x,)+b,~,H~~,(x,)form=2,3 ,..., N+k.For 
comparative purposes the solution of (2.2) was obtained by solving (P) with a fourth- 
order, variable step size Runge and Kutta integrator. This resulted in a fivefold 
increase in computer time. 

It is known [6] that if fE C”‘[O, l] for j=O, I,..., k- 1, then 
iGdk(x) IIf - s Ilm < Ck,jhjw(f’); II), where h = maxi $ i<N(xi+, - xi), C,,j is a 
constant which depends only on k and j and 

w(f”‘;h) :=sup{lf”‘(x)-f”‘(y)l:x,yE [O, l],Ix-yl <h} 

is the modulus of continuity of f”’ at h. It is also known that the above estimate 
cannot be improved. Thus, if n E C’@[O, 11, then ~(n’~-“; h) < h IIn(k)]l, and the 
best that we can hope for is ](n - fill, = O(hk). As will be seen, in several numerical 
examples tested the optimal convergence rate was attained. 

3. NUMERICAL RESULTS 

In this section we present some numerical examples for k = 1, 2 and 3 with knot 
sequence {(i - l)/N}~~,‘. In all examples the Levenberg-Marquardt algorithm [7] 
was used to solve (2.2). The R(w~)‘s were computed by inputting the exact solution 
n(x) into (B). All computations were done on the Cyber-173. 

To solve a large nonlinear system of equations it is usually necessary to have a 
good initial approximation to the solution. For fixed N and k our solution was built 
up according to the following algorithm: 

(i) Select a sequence of integers m = {mi}yE, with m, > k, m,,, = fl and mi < mi+ , . 
(ii) Compute fim, by solving (2.2) with an initial guess A, = ... = A,,,, = 1. 
(iii) For j= I,..., M- 1 compute n;,.+, by solving (2.2) with the initial guess 

chosen so that timi+, interpolates fimj at the mj+ r distinct points {yi}T~;‘. This gives a 
linear system for the initial Ai)s that is invertible if and only if 

Xi < Yi < Xi+kr i= 1 ,..., q, I [61. 

We found that adequate results were obtained by setting m = { 2’}?!, for k = 1, and 
m = {4i}f?, for k = 2 and 3. 

The maximum attainable fl is limited by considerations of computer time and 
accuracy. In the examples tested we found that satisfactory results were obtained if 
N=32fork=l andN=8or 12fork=2and3. 
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EXAMPLE 1 (FIGS. 1,5,9). 

n(x) = 1 + x2. 

TABLE1 

k 1 2 3 

iv 
Iln - & 
II n - ffll* 
Computational time (CPU set) 
Estimated rate convergence 

32 12 12 
0.033 0.0033 1 x lo-’ 
0.014 0.0011 0 

74 22 24 
1.0 2.1 

EXAMPLE 2 (FIGS. 2,6, 10). 

n(x) = 1, XE [OmJ(~, 11 
1 + sin2 2x(x - i), XE [i, i]. 

TABLE II 

k 1 2 3 

Iv 32 12 12 
II n - ffllm 0.12 0.07 1 0.065 
Iln - fill, 0.032 0.18 5.5 x lo-4 
Computational time (CPU set) 120 41 33 
Estimated rate convergence 1.1 0.96 - 

EXAMPLE 3 (FIGS. 3,7, 11). 

XE [Q 4) 
XE [Q, 11. 

TABLE III 

k 1 2 3 

iv 16 8 8 
II n - ffll, 0.49 0.48 0.46 
II n - 412 0.17 0.10 0.013 
Computational time (CPU set) 27 12 7.0 
Estimated convergence rate - 
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EXAMPLE 4 (FIGS. 4,8, 12). 

1, x E [O, f) 

n(x) = 

/ 

; + 2x, xE [a, t1 

2, XE (& 11. 

TABLE IV 

k 1 2 3 

Iv 32 12 12 

1) n n I “:)I- n2 0.038 0.015 0.024 0.0074 4.4 0.023 x lo-’ 
Computational time (CPU set) 168 46 24 
Estimated rate convergence 1.1 1.1 

In practice the measurement of the reflection coefficients is subject to experimental 
error. To simulate this situation we introduced Gaussian-type noise in the values of 
R(o) in the form R(w) + ea/]R(o)], w h ere a is Gaussian random number with mean 
=0 and standard derivation =l and E is an “amplitude” factor to be adjusted. As the 
following tables indicate stable results were obtained when E was less than 10m3. 

EXAMPLE 5. 

n(x) = 1 + x2, k=2, ii7=8. 

TABLE V 

Comp. time 

6.0 
7.9 
12 
25 

E/I R @)I II n - 412 II n - ffllr 

0 0.0019 0.0054 
10-5 0.0093 0.026 
10-d 0.070 0.19 
10-3 0.34 1.0 

EXAMPLE 6. 

1, x E IO, $1 
n(x) = $ + 2x, XE ra, iI, k=2,N=8 

2, XE [i, I]. 
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TABLE VI 

Comp. time &II R NJ)1 Iln -a lln -a, 

14 0 0.22 0.06 1 
19 10-s 0.012 0.03 1 
22 1o-4 0.08 1 0.20 
34 10-3 0.38 1.1 

4. DISCUSSION 

In all noiseless examples with k = 1 and 2, except for Example 3, the optimal 
convergence rate was attained. 

2.0 

I.0 

FIGS. 1-4. k = 1. 
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2.5 

x x 

7 8 

FIGS. 5-8. k= 2. 

It is obvious from the results listed in Tables I-IV that if a desired accuracy is 
specified, then the minimum computational time is achieved by increasing the order 
of the splines rather than increasing the number of unknowns for a fixed order. 

The results in Tables V and VI show that our method is relatively stable with 
respect to experimental error which is of fundamental importance in most 
applications. 

The numerical approaches used in [2] and [3] require knowledge of the reflection 
coefficient for values of frequency equal to jrc/2 for j= l,..., J. Our method has no 
such restriction. In addition, accuracy comparable to that obtained by the above is 
achieved with far fewer reflection coefficient observations (typically, 2-4 times less). 



164 DUNNANDHARIHARAN 

9 10 

2.5 -  
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2.0 -  . -  

. 

. computed solution 

.5 I I I I 1  I I 0  .25 .50 .75 1.00 J 
0 .*5 .50 .75 1.00 

x x 

II 12 

FIGS. 9-12. k = 3. 

The pulse spectrum technique (PST) used in [5] also avoids the above difficulties. 
However, due to the “analytic” solution of the initial value problem (P), and the 
overall simplicity of our method, it seems to be an attractive alternate to the PST. 
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